首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A risk-based decision model and risk assessment of invasive mussels
Authors:Yegang Wu  Steve M Bartell  Jim Orr  Jared Ragland  Dennis Anderson
Institution:1. Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Ecophysiology, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;2. Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands;3. Royal Netherlands Institute for Sea Research NIOZ, Korringaweg 7, 4401 NT Yerseke, The Netherlands
Abstract:Ecological risks and economical impacts of zebra mussels (Dreissena polymorpha) include alterations in the transfer of energy and cycling of materials in aquatic systems, increased accumulation of contaminants in aquatic food chains, clogging of water intakes, and damage to related infrastructure. A risk-based decision model was developed to assess the likelihood of zebra mussel invasion and establishment throughout the St. Croix Basin. The risk-based decision model CASMZM is a version of the comprehensive aquatic systems model (CASM) and that was modified to simulate the growth, reproduction, and spatial distribution of zebra mussels. As a risk management tool, the model simulates the population dynamical complexity of zebra mussel populations, as well as their impacts on phytoplankton, zooplankton, benthic invertebrates, fish and natural mussel populations. The CASMZM is based in part on a set of zebra mussel's physical–chemical habitat requirements such as calcium concentration (17 mg/L), total hardness (57.5 mg/L), conductivity (62 μS/cm), dissolved oxygen concentration (6 mg/L), salinity (7 PSU), pH (6.8 and 9.4), Secchi disk depths (75 and 205 cm), and water temperatures for growth (14 °C) and reproduction (30 °C). The CASMZM also includes a bioenergetics framework that describes the growth of zebra mussels and their trophic impacts on aquatic food webs. The CASMZM can be used to forecast the risk of successful dreissenid invasions and assess the associated impacts of invasive mussels on food web dynamics of previously uninfested aquatic systems throughout the St. Croix Basin.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号