首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and evolutionary models
Authors:N. A. Provorov
Affiliation:1. All-Russian Research Institute of Agricultural Microbiology, Russian Academy of Agricultural Sciences, sh. Podbel’skogo 3, Pushkin-8, St. Petersburg, 196608, Russia
Abstract:Efficiency of symbiotic nitrogen fixation in legumes depends on bringing together the processes of N2 fixation, assimilation of its products, supply of nitrogenase with energy, and development of nodule tissue and cellular structures. Coordination of these processes could arise from the evolutionary old functions of the nodules associated with deposition of the products of photosynthesis governed by systemic signals traveling between the above-ground organs and the roots. Further increase in symbiotic efficiency was associated with a pronounced ability to fix N2 by intracellular bacteroids that lost capability to propagate (as observed in galegoid legumes from the tribes Viciae, Trifolieae, and Galegae producing indeterminate nodules). However, efficiency of these symbioses is restricted by a slow removal from the nodules of the products of N2 fixation, which are assimilated along the same amide pathway as nitrogen compounds arriving from the soil. In legumes from the tribe Phaseoleae, such a restriction was overcome owing to a particular way of nitrogen assimilation via its incorporation into ureides (in determinate nodules). Development of symbioses where specialization of bacteroids in symbiotic fixation of atmospheric nitrogen is combined with its ureide assimilation will make it possible to produce new forms of plants highly efficient in symbiotic nitrogen fixation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号