Regulation of KATP channel expression and activity by the SUR1 nucleotide binding fold 1 |
| |
Authors: | Masia Ricard Caputa George Nichols Colin G |
| |
Affiliation: | Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA. |
| |
Abstract: | ATP-sensitive K(+) (K(ATP)) channels are oligomeric complexes of pore-forming Kir6 subunits and regulatory Sulfonylurea Receptor (SUR) subunits. SUR, an ATP-Binding Cassette (ABC) transporter, confers Mg-nucleotide stimulation to the channel via nucleotide interactions with its two cytoplasmic domains (Nucleotide Binding Folds 1 and 2; NBF1 and NBF2). Regulation of K(ATP) channel expression is a complex process involving subunit assembly in the ER, SUR glycosylation in the Golgi, and trafficking to the plasma membrane. Dysregulation can occur at different steps of the pathway, as revealed by disease-causing mutations. Here, we have addressed the role of SUR1 NBF1 in gating and expression of reconstituted channels. Deletion of NBF1 severely impairs channel expression and abolishes MgADP stimulation. Total SUR1 protein levels are decreased, suggestive of increased protein degradation, but they are not rescued by treatment with sulfonylureas or the proteasomal inhibitor MG-132. Similar effects of NBF1 deletion are observed in recombinant K(ATP) channels obtained by "splitting" SUR1 into two separate polypeptides (a N-terminal "half" and a C-terminal "half"). Interestingly, the location of the "splitting point" in the vicinity of NBF1 has marked effects on the MgADP stimulation of resulting channels. Finally, ablation of the ER retention motif upstream of NBF1 (in either "split" or full-length SUR1) does not rescue expression of channels lacking NBF1. These results indicate that, in addition to NBF1 being required for MgADP stimulation of the channel, it plays an important role in the regulation of channel expression that is independent of the ER retention checkpoint and the proteasomal degradation pathway. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|