首页 | 本学科首页   官方微博 | 高级检索  
     


Structure basis for the regulation of glyceraldehyde-3-phosphate dehydrogenase activity via the intrinsically disordered protein CP12
Authors:Matsumura Hiroyoshi  Kai Akihiro  Maeda Takayuki  Tamoi Masahiro  Satoh Atsuko  Tamura Haruka  Hirose Mika  Ogawa Taketo  Kizu Natsuko  Wadano Akira  Inoue Tsuyoshi  Shigeoka Shigeru
Affiliation:Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. matsumura@chem.eng.osaka-u.ac.jp
Abstract:The reversible formation of a glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-CP12-phosphoribulokinase (PRK) supramolecular complex, identified in oxygenic photosynthetic organisms, provides light-dependent Calvin cycle regulation in a coordinated manner. An intrinsically disordered protein (IDP) CP12 acts as a linker to sequentially bind GAPDH and PRK to downregulate both enzymes. Here, we report the crystal structures of the ternary GAPDH-CP12-NAD and binary GAPDH-NAD complexes from Synechococcus elongates. The GAPDH-CP12 complex structure reveals that the oxidized CP12 becomes partially structured upon GAPDH binding. The C-terminus of CP12 is inserted into the active-site region of GAPDH, resulting in competitive inhibition of GAPDH. This study also provides insight into how the GAPDH-CP12 complex is dissociated by a high NADP(H)/NAD(H) ratio. An unexpected increase in negative charge potential that emerged upon CP12 binding highlights the biological function of CP12 in the sequential assembly of the supramolecular complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号