首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tongue-muscle-controlling motoneurons in the Japanese toad: topography,morphology and neuronal pathways from the ‘snapping-evoking area’ in the optic tectum
Authors:Masahiko Satou  Toshiya Matsushima  Hiroaki Takeuchi  Kazuo Ueda
Institution:1. Zoological Institute, Faculty of Science, University of Tokyo, 113, Tokyo, Japan
Abstract:As a step to clarifying the neural bases for the visually-guided prey-catching behavior in the toad, special attention was paid to the flipping movement of the tongue. Tongue-muscle-controlling motoneurons were identified antidromically, and their topographical distribution within the hypoglossal nucleus, the morphology, and the neuronal pathways from the optic tectum including the 'snapping-evoking area' (see below) to these motoneurons were investigated in paralyzed Japanese toads using intracellular recording techniques. The morphology of motoneurons innervating the tongue-protracting or retracting muscles (PMNs or RMNs respectively) was examined by means of intracellular-staining (using HRP/cobaltic lysine) and retrograde-labeling (using cobaltic lysine) methods. Both PMNs and RMNs showed an extensive spread of the branching trees of dendrites; 4 dendritic fields were distinguished: lateral/ventrolateral, dorsal/dorsolateral, medial, and in some motoneurons, contralateral dendritic fields, although there was a tendency for the dorsal/dorsolateral dendritic field to be less extensive in the PMNs than in the RMNs. The axons of both PMNs and RMNs arose from thick dendrites, ran in a ventral direction without any axon-collaterals branching off, and then entered the hypoglossal nerve. The PMNs and RMNs were distributed topographically within the hypoglossal nucleus; the RMNs were located rostrally within the nucleus, whereas the PMNs were located more caudally within it. In about 3/4 of the RMNs tested, depolarizing potentials presumably the excitatory postsynaptic potentials (EPSPs)], on which action potentials were often superimposed, were evoked by electrical stimuli applied to the nerve branch innervating the tongue protractor. These EPSPs were temporally facilitated when the electrical stimuli were applied at short intervals (10 ms). Both PMNs and RMNs showed hyperpolarizing potentials (IPSPs) in response to single electrical stimuli of various intensities (10-200 microA) applied to the 'snapping-evoking area' (lateral/ventrolateral part of the optic tectum) on either side. These IPSPs were facilitated after repetitive electrical stimulations at short intervals (10 ms) and of weaker intensities (down to 10 microA); i.e., a temporal facilitation of the IPSPs was observed. On the other hand, large and long-lasting EPSPs which prevailed over the underlying IPSPs were evoked after repetitive electrical stimulations (a few pulses or more) at short intervals (10 ms) and of stronger intensities (generally 90 microA or more); thus, a temporal facilitation of the EPSPs was also observed.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号