首页 | 本学科首页   官方微博 | 高级检索  
     


Limited proteolysis reveals a structural difference in the globular head domains of dephosphorylated and phosphorylated Acanthamoeba myosin II.
Authors:C Ganguly  B Martin  M Bubb  E D Korn
Affiliation:Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.
Abstract:Phosphorylation at three sites at the tip of the tail of myosin II from Acanthamoeba castellanii inactivates the actin-activated Mg(2+)-ATPase activity of filamentous myosin and the in vitro motility activity of both monomeric and filamentous myosin. To seek a structural explanation for these effects, we examined the susceptibilities of dephosphorylated and phosphorylated myosins II to endoproteinases. Endoproteinase Arg-C cleaved myosin II preferentially at two sites in the globular head, Lys-621 and Arg-638, producing an NH2-terminal fragment of about 67,000 Da and a COOH-terminal fragment of about 112,000 Da. Dephosphorylated monomers and filaments were cleaved about 3 times more rapidly than their phosphorylated counterparts principally because of a much greater rate of cleavage at Arg-638; the ratio of cleavage at Arg-638:Lys-621 was about 3 for dephosphorylated myosins and about 0.5 for phosphorylated myosins. These data demonstrate that phosphorylation at the tip of the tail of Acanthamoeba myosin II causes a conformational change in the globular head that contains the catalytic sites; therefore, this conformational change may be related to the different catalytic and motile activities of the dephosphorylated and phosphorylated enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号