首页 | 本学科首页   官方微博 | 高级检索  
     


Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model
Authors:Meaud Julien  Grosh Karl
Affiliation:Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan;Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
Abstract:One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号