首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Theoretical calculation of triazolam hydroxylation and endogenous steroid inhibition in the active site of CYP3A4
Authors:Torimoto Nao  Ishii Itsuko  Hata Masayuki  Kobayashi Yukari  Nakamura Hiroyoshi  Ariyoshi Noritaka  Kitada Mitsukazu
Institution:Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
Abstract:CYP3A4 has unusual kinetic characteristics because it has a large active site. CYP3A4 produced more 4-hydroxytriazolam than alpha-hydroxytriazolam at concentrations of more than 60 muM triazolam, and different steroids had different inhibitory effects on the system. To clarify these interesting observations, the interactions between substrate and substrate/steroid were investigated by theoretical calculations. When two triazolam molecules were docked into the active site, the distance between the O-atom and the 4-hydroxylated site was less than the distance to the alpha-hydroxylated site because of interaction between the two triazolam molecules. Estradiol inhibited both alpha- and 4-hydroxytriazolam formation by 50%. Dehydroepiandrosterone (DHEA) inhibited alpha-hydroxylation more than 4-hydroxytriazolam formation, whereas aldosterone had no effect. When one triazolam molecule and one steroid molecule were simultaneously docked, estradiol increased the distance between the O-atom and the two hydroxylated sites, DHEA only increased the distance between the O-atom and alpha-hydroxylated site, and aldosterone did not change the distances. The relevant angles of Fe-O-C in the hydroxylated site of triazolam also widened, together with increased distance. These findings indicate that formation of a substrate and substrate/effector complex in the active site may be a factor for determining the enzyme kinetic parameters of CYP3A4.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号