首页 | 本学科首页   官方微博 | 高级检索  
     


Defining the structure of the substrate-free state of the DnaK molecular chaperone
Authors:Swain J F  Sivendran R  Gierasch L M
Affiliation:Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
Abstract:Members of the Hsp70 (heat-shock protein of 70 kDa) family of molecular chaperones bind to exposed hydrophobic stretches on substrate proteins in order to dissociate molecular complexes and prevent aggregation in the cell. Substrate affinity for the C-terminal domain of the Hsp70 is regulated by ATP binding to the N-terminal domain utilizing an allosteric mechanism. Our multi-dimensional NMR studies of a substrate-binding domain fragment (amino acids 387-552) from an Escherichia coli Hsp70, DnaK(387-552), have uncovered a pH-dependent conformational change, which we propose to be relevant for the full-length protein also. At pH 7, the C-terminus of DnaK(387-552) mimics substrate by binding to its own substrate-binding site, as has been observed previously for truncated Hsp70 constructs. At pH 5, the C-terminus is released from the binding site, such that DnaK is in the substrate-free state 10-20% of the time. We propose that the mechanism for the release of the tail is a loss of affinity for substrate at low pH. The pH-dependent fluorescence changes at a tryptophan residue near the substrate-binding pocket in full-length DnaK lead us to extend these conclusions to the full-length DnaK as well. In the context of the DnaK substrate-binding domain fragment, the release of the C-terminus from the substrate-binding site provides our first glimpse of the empty conformation of an Hsp70 substrate-binding domain containing a portion of the helical subdomain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号