首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae
Authors:Zhang Chaoying  Roberts Tania M  Yang Jay  Desai Ridhdhi  Brown Grant W
Institution:Department of Biochemistry, University of Toronto, Toronto, Ont., Canada M5S 1A8.
Abstract:Replication forks can stall spontaneously at specific sites in the genome, and upon encountering DNA lesions resulting from chemical or radiation damage. In Saccharomyces cerevisiae proteins implicated in processing of stalled replication forks include those encoded by the SGS1, TOP3, MUS81, MMS4, SLX1, SLX4, SLX5/HEX3, and SLX8 genes. We tested the roles of these genes in suppressing gross chromosomal rearrangements (GCRs), which include translocations, large interstitial deletions, and loss of a chromosome arm with de novo telomere addition. We found that mus81, mms4, slx1, slx4, slx5, and slx8 mutants all have elevated levels of spontaneous GCRs, and that SLX5 and SLX8 are particularly critical suppressors of GCRs during normal cell cycle progression. In addition to increased GCRs, deletion of SLX5 or SLX8 resulted in increased relocalization of the DNA damage checkpoint protein Ddc2 and activation of the checkpoint kinase Rad53, indicating the accumulation of spontaneous DNA damage. Surprisingly, mutants in slx5 or slx8 were not sensitive to transient replication fork stalling induced by hydroxyurea, nor were they sensitive to replication dependent double-strand breaks induced by camptothecin. This suggested that Slx8 and Slx8 played limited roles in stabilizing, restarting, or resolving transiently stalled replication forks, but were critical for preventing the accumulation of DNA damage during normal cell cycle progression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号