首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanics of growth pulsations as the basis of growth and morphogenesis in colonial hydroids
Authors:I. A. Kosevich
Affiliation:(1) Biological Faculty, Moscow State University, Leninskie gory, Moscow, 119992, Russia
Abstract:Growth and shaping in colonial hydroids (Hydrozoa, Cnidaria) are realized due to the functioning of special colony elements, growing tips located at the terminuses of branched colony body. Unlike in plants, the growing tips of colonial hydroids are sites of active cell movements related to morphogenesis and lacking proliferation. The activity of hydroid growing tips is expressed as growth pulsations: cyclic repetitions of their apex extensions and retractions. The parameters of growth pulsations are species specific and related to the shape of a forming element. Here, the succession of cell movements and changes in mutual arrangement within the growing tip are described in detail at all pulsation phases. The role of the inner cell layer in the tip activity was demonstrated for the first time. Relationships between the growing tip parameters, length and diameter, and pulsations are discussed. A scheme is proposed for cyclic processes in both epithelial layers. An explanation is provided for the two-step mode of growth pulsations with relative independence of the main phases. It was proposed that successive activities of the tip ecto-and endoderm serve as driving forces provided there is a hard outer skeleton. This scheme makes it possible to explain some patterns of growth and morphogenesis in colonial hydroids, such as gradually increasing growth rate of a new tip and its maximum growth rate, differences in the parameters of growth pulsations between shoot and stolon tips, shoot base inclination towards the stolon tip, etc., and provides a basis for further improvement of the model of morphogenesis in hydroids.
Keywords:morphogenesis  colonial hydroids  growth pulsations  growth mechanics  interaction of cell layers
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号