首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Feline immunodeficiency virus vectors. Gene transfer to mouse retina following intravitreal injection
Authors:Derksen Todd A  Sauter Sybille L  Davidson Beverly L
Institution:Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
Abstract:

Background

Transduction of the murine retinal pigmented epithelium (RPE) with adenovirus vectors requires technically difficult and invasive subretinal injections. This study tested the hypothesis that recombinant vectors based on feline immunodeficiency virus (FIV) could access the retina following intravitreal injection.

Methods

FIV vectors expressing E. coli β‐galactosidase (FIVβgal) were injected alone, or in combination with adenovirus vectors expressing eGFP, into the vitreous of normal mice and eyes evaluated for transgene expression. In further studies, the utility of FIV‐mediated gene transfer to correct lysosomal storage defects in the anterior and posterior chambers of eyes was tested using recombinant FIV vectors expressing β‐glucuronidase. FIVβgluc vectors were injected into β‐glucuronidase‐deficient mice, an animal model of mucopolysacharridoses type VII.

Results

The results of this study show that similar to adenovirus, both corneal endothelium and cells of the iris could be transduced following intravitreal injection of FIVβgal. However, in contrast to adenovirus, intravitreal injection of FIVβgal also resulted in transduction of the RPE. Immunohistochemistry following an intravitreal injection of an AdeGFP (adenovirus expressing green fluorescent protein) and FIVβgal mixture confirmed that both viruses mediated transduction of corneal endothelium and cells of the iris, while only FIVβgal transduced cells in the retina. Using the β‐glucuronidase‐deficient mouse, the therapeutic efficacy of intravitreal injection of FIVβgluc (FIV expressing β‐glucuronidase) was tested. Intravitreal injection of FIVβgluc to the eyes of β‐glucuronidase‐deficient mice resulted in rapid reduction (within 2 weeks) of the lysosomal storage defect within the RPE, corneal endothelium, and the non‐pigmented epithelium of the ciliary process. Transgene expression and correction of the lysosomal storage defect remained for at least 12 weeks, the latest time point tested.

Conclusion

These studies demonstrate that intravitreal injection of FIV‐based vectors can mediate efficient and lasting transduction of cells in the cornea, iris, and retina. Copyright © 2002 John Wiley & Sons, Ltd.
Keywords:MPS  FIV  gene therapy  cornea  trabecular meshwork
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号