首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Within-genotype epigenetic variation enables broad niche width in a flower living yeast
Authors:Schrey A W  Richards C L
Institution:Integrative Biology, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA.
Abstract:Niche theory is one of the central organizing concepts in ecology. Generally, this theory defines a given species niche as all of the factors that effect the persistence of the species as well as the impact of the species in a given location ( Hutchinson 1957 ; Chase 2011 ). Many studies have argued that phenotypic plasticity enhances niche width because plastic responses allow organisms to express advantageous phenotypes in a broader range of environments ( Bradshaw 1965 ; Van Valen 1965 ; Sultan 2001 ). Further, species that exploit habitats with fine‐grained variation, or that form metapopulations, are expected to develop broad niche widths through phenotypic plasticity ( Sultan & Spencer 2002 ; Baythavong 2011 ). Although a long history of laboratory, greenhouse and reciprocal transplant experiments have provided insight into how plasticity contributes to niche width ( Pigliucci 2001 ), recent advances in molecular approaches allow for a mechanistic understanding of plasticity at the molecular level ( Nicotra et al. 2010 ). In particular, variation in epigenetic effects is a potential source of the within‐genotype variation that underlies the phenotypic plasticity associated with broad niche widths. Epigenetic mechanisms can alter gene expression and function without altering DNA sequence ( Richards 2006 ) and may be stably transmitted across generations ( Jablonka & Raz 2009 ; Verhoeven et al. 2010 ). Also, epigenetic mechanisms may be an important component of an individual’s response to the environment ( Verhoeven et al. 2010 ). While these ideas are intriguing, few studies have made a clear connection between genome‐wide DNA methylation patterns and phenotypic plasticity (e.g. Bossdorf et al. 2010 ). In this issue of Molecular Ecology, Herrera et al. (2012) present a study that demonstrates epigenetic changes in genome‐wide DNA methylation are causally active in a species’ ability to exploit resources from a broad range of environments and are particularly important in harsh environments.
Keywords:DNA methylation  epigenetics  fungi  MS‐AFLP  niche theory  phenotypic plasticity
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号