首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arginase inhibition by rhaponticin increases L-arginine concentration that contributes to Ca2+-dependent eNOS activation
Authors:Bon-Hyeock Koo  Jonghoon Lee  Younghyun Jin  Hyun Kyo Lim  Sungwoo Ryoo
Institution:1.Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea;2.Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
Abstract:Although arginase primarily participates in the last reaction of the urea cycle, we have previously demonstrated that arginase II is an important cytosolic calcium regulator through spermine production in a p32-dependent manner. Here, we demonstrated that rhaponticin (RPT) is a novel medicinal-plant arginase inhibitor and investigated its mechanism of action on Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation. RPT was uncompetitively inhibited for both arginases I and II prepared from mouse liver and kidney. It also inhibited arginase activity in both aorta and human umbilical vein endothelial cells (HUVECs). Using both microscope and FACS analyses, RPT treatments induced increases in cytosolic Ca2+ levels using Fluo-4 AM as a calcium indicator. Increased cytosolic Ca2+ elicited the phosphorylations of both CaMKII and eNOS Ser1177 in a time-dependent manner. RPT incubations also increased intracellular L-arginine (L-Arg) levels and activated the CaMKII/AMPK/Akt/eNOS signaling cascade in HUVECs. Treatment of L-Arg and ABH, arginase inhibitor, increased intracellular Ca2+ concentrations and activated CaMKII-dependent eNOS activation in ECs of WT mice, but, the effects were not observed in ECs of inositol triphosphate receptor type 1 knockout (IP3R1−/−) mice. In the aortic endothelium of WT mice, RPT also augmented nitric oxide (NO) production and attenuated reactive oxygen species (ROS) generation. In a vascular tension assay using RPT-treated aortic tissue, cumulative vasorelaxant responses to acetylcholine (Ach) were enhanced, and phenylephrine (PE)-dependent vasoconstrictive responses were retarded, although sodium nitroprusside and KCl responses were not different. In this study, we present a novel mechanism for RPT, as an arginase inhibitor, to increase cytosolic Ca2+ concentration in a L-Arg-dependent manner and enhance endothelial function through eNOS activation.
Keywords:Arginase  Ca2+  eNOS  L-Arginine  Rhaponticin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号