首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protective and injuring action of visible light on photosynthetic apparatus in wheat plants during hyperthermia treatment
Authors:I M Kislyuk  L S Bubolo  O D Bykov  I E Kamentseva  O A Sherstneva
Institution:(1) Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, St. Petersburg, 197376, Russia
Abstract:Illumination of wheat (Triticum aestivum L.) leaves during heat treatment produced either additional injury or protection of photosynthetic apparatus depending on irradiance and the heating dose. Furthermore, illumination of leaves during hyperthermia exerted differential impacts on thermal tolerances of photosynthesis and photosystem II-driven electron transport assessed from the reduction of 2,6-dichlorophenolindophenol (DCPIP). Measurements with infrared gas analyzer showed that mild heating of leaves in darkness (10 min at 38–40°C) had stronger inhibitory effect on CO2 uptake than heating of leaves exposed to low and moderate complex irradiances (3–30 klx), as well as excessive irradiance (75–100 klx). When the leaves were heated at higher temperatures (42–44°C), the low and moderate irradiances had a protective action, while high-intensity light aggravated the inhibition of photosynthesis. Illumination of leaves with weak light during heat treatment mitigated the impairment of chloroplast ultrastructure, whereas irradiation with high-intensity light (100 klx) destroyed the sensitive population of chloroplasts. The heat-stimulated photoinhibition was stronger for leaf photosynthesis than for DCPIP reduction in chloroplasts isolated from heat-treated leaves. No correlation was observed between the extent of violaxanthin deepoxidation, zeaxanthin accumulation, and the protective effect of light on photosynthetic apparatus during heat treatments.
Keywords:Triticum aestivum  photosynthesis  electron transport  photoinhibition  protective effect  violaxanthin  zeaxanthin  chloroplast ultrastructure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号