首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues
Authors:Ouzzine Mohamed  Gulberti Sandrine  Levoin Nicolas  Netter Patrick  Magdalou Jacques  Fournel-Gigleux Sylvie
Institution:UMR 7561 CNRS, Université Henri Poincaré Nancy 1, Faculté de Médecine, 54505 Vandoeuvre-lès-Nancy, France. ouzzine@pharmaco-med.u-nancy.fr
Abstract:The human beta1,3-glucuronosyltransferase I (GlcAT-I) plays a key role in proteoglycan biosynthesis by catalyzing the transfer of glucuronic acid onto the trisaccharide-protein linkage structure Galbeta1,3Galbeta1,4Xylbeta-O-Ser, a prerequisite step for polymerization of glycosaminoglycan chains. In this study, we identified His(308) and Arg(277) residues as essential determinants for the donor substrate (UDP-glucuronic acid) selectivity of the human GlcAT-I. Analysis of the UDP-glucuronic acid-binding site by computational modeling in conjunction with site-directed mutagenesis indicated that both residues interact with glucuronic acid. Substitution of His(308) by arginine induced major changes in the donor substrate specificity of GlcAT-I. Interestingly, the H308R mutant was able to efficiently utilize nucleotide sugars UDP-glucose, UDP-mannose, and UDP-N-acetylglucosamine, which are not naturally accepted by the wild-type enzyme, as co-substrate in the transfer reaction. To gain insight into the role of Arg(277), site-directed mutagenesis in combination with chemical modification was carried out. Substitution of Arg(277) with alanine abrogated the activity of GlcAT-I. Furthermore, the arginine-directed reagent 2,3-butanedione irreversibly inhibited GlcAT-I, which was effectively protected against inactivation by UDP-glucuronic acid but not by UDP-glucose. It is noteworthy that the activity of the H308R mutant toward UDP-glucose was unaffected by the arginine-directed reagent. Our results are consistent with crucial interactions between the His(308) and Arg(277) residues and the glucuronic acid moiety that governs the specificity of GlcAT-I toward the nucleotide sugar donor substrate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号