Redox equilibrium in mucosal T cells tunes the intestinal TCR signaling threshold |
| |
Authors: | Reyes Brenda M Rivera Danese Silvio Sans Miquel Fiocchi Claudio Levine Alan D |
| |
Affiliation: | Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. |
| |
Abstract: | Mucosal immune tolerance in the healthy intestine is typified by lamina propria T cell (LPT) functional hyporesponsiveness after TCR engagement when compared with peripheral blood T cell (PBT). When LPT from an inflamed intestine are activated through TCR cross-linking, their responsiveness is stronger. LPT are thus capable of switching from a tolerant to a reactive state, toggling between high and low thresholds of activation. We demonstrate that in normal LPT global tyrosine phosphorylation upon TCR cross-linking or an increase in intracellular H2O2, an inhibitor of protein tyrosine phosphatases, is muted. Thus, we propose that LPT have a greater reducing capacity than PBT, shifting the balance between kinases and protein tyrosine phosphatases in favor of the latter. Surface gamma-glutamyl transpeptidase, an indirect indicator of redox potential, and glutathione are significantly elevated in LPT compared with PBT, suggesting that elevated glutathione detoxifies TCR-induced reactive oxygen species. When glutathione is depleted, TCR-induced LPT tyrosine phosphorylation rises to PBT levels. Conversely, increasing glutathione in PBT attenuates tyrosine phosphorylation. In LPT isolated from inflamed mucosa, TCR cross-linking induces greater phosphorylation, and gamma-glutamyl transpeptidase levels are reduced compared with those from autologous noninflamed tissue. We conclude that the high TCR signaling threshold of mucosal T cells is tuned by intracellular redox equilibrium, whose dysregulation may mediate intestinal inflammation. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|