首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glucose transport in thymocyte plasma-membrane vesicles
Authors:Wayne P Schraw  David M Regen
Institution:Department of Physiology, Vanderbilt University School of Medicine, Nashville, TN 37232 U.S.A.
Abstract:Calf-thymocyte membrane vesicles, prepared by hypotonic lysis and homogenization, were isolated by standard centrifugal techniques designed for enrichment of plasma membrane. At 20°C, these vesicles equilibrated with d-glucose and 3-O-methyl-d-glucose more rapidly than with l-glucose. About 25% of the equilibrium d-sugar space (6 μl/mg protein) was very slowly penetrated by l-glucose ( ). The time course of d-sugar accumulation in excess of l-glucose accumulation indicated that this space equilibrated with d-glucose and 3-O-methyl-d-glucose with half-times of approximately 0.2–0.4 min. The remainder of the equilibrium d-sugar space (about 75%) appeared equally accessible to both glucose isomers ( to 5 min). This was confirmed in studies of efflux from preloaded vesicles, where the d-glucose space fell with a short half-time (0.2 min) to the l-glucose space, after which the two isomers exited with the same half-time. Addition of sucrose to increase osmolarity reduced both spaces (specific and non-specific) in a manner which indicated that little if any of the vesicle sugar was bound. This was confirmed by the fact that equilibrium glucose space was independent of glucose concentration and by the fact that vesicles immediately lost their sugar when diluted with water at 0°C. These data indicate the presence of two vesicle types, discriminant and indiscriminant as regards transport of the glucose isomers. Entry of d-glucose into the discriminant (stereospecific) vesicles was temperature sensitive (Q10 > 2), saturable (Km 2 mM), and was inhibited by phloretin (Ki < 200 μM), N-ethylmaleimide (Ki < 10 mM) and cytochalasin B (Ki < 2 μM), suggesting that these vesicles contain the plasma-membrane glucose carrier. Entry of l- and d-glucose into the indiscriminant vesicles showed none of these properties. The equilibrium-exchange Km and V were about five times the entry Km and V, indicating the substrate loading greatly facilitates carrier translocation, at least in the outward direction.
Keywords:Glucose transport  Membrane vesicle  (Calf thymocyte)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号