Towards a three-alpha-helix bundle protein that binds volatile general anesthetics |
| |
Authors: | Manderson Gavin A Johansson Jonas S |
| |
Affiliation: | University of Pennsylvania, Department of Anesthesia and the Johnson Research Foundation, Philadelphia, PA 19104, USA. |
| |
Abstract: | The general anesthetics halothane and chloroform are capable of binding to synthetic water-soluble four-alpha-helix bundles, which model the putative in vivo receptors. In this study, we investigate the binding of these anesthetics to synthetic water-soluble three-alpha-helix bundles. A series of variants containing up to four X-to-Ala and up to four X-to-Met substitutions was made; and the effect of these substitutions on structure, stability and anesthetic binding affinity was examined. Generally, the amount of alpha-helix and the stability of the three-alpha-helix bundles decreased as the number of X-to-Ala substitutions increased. A concomitant red-shift in tryptophan fluorescence lambdamax was seen, suggesting an increased flexibility of the native structure. Up to four X-to-Met substitutions had little effect on the amount of alpha-helix, but an increase in tryptophan lambdamax was seen for the variants with three and four methionine substitutions. The exceptions were a) a variant with a clustering of alanine and methionine residues at one end of the three-alpha-helix bundle, suggesting a gate structure that can admit ligand molecules; and b) a variant with a single Leu35Ala substitution, suggesting that at select positions, the size of the side chain is important for defining anesthetic binding affinity. |
| |
Keywords: | three‐α‐helix bundles structure stability anesthetic binding |
本文献已被 PubMed 等数据库收录! |
|