首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chondroitinase-mediated degradation of rare 3-O-sulfated glucuronic acid in functional oversulfated chondroitin sulfate K and E
Authors:Fongmoon Duriya  Shetty Ajaya Kumar  Basappa  Yamada Shuhei  Sugiura Makiko  Kongtawelert Prachya  Sugahara Kazuyuki
Institution:Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
Abstract:Chondroitin sulfate K (CS-K) from king crab cartilage rich in rare 3-O-sulfated glucuronic acid (GlcUA(3S)) displayed neuritogenic activity and affinity toward various growth factors like CS-E from squid cartilage. CS-K-mediated neuritogenesis of mouse hippocampal neurons in culture was abolished by digestion with chondroitinase (CSase) ABC, indicating the possible involvement of GlcUA(3S). However, identification of GlcUA(3S) in CS chains by conventional high performance liquid chromatography has been hampered by its CSase ABC-mediated degradation. To investigate the degradation process, an authentic CS-E tetrasaccharide, Delta4,5HexUA-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), was digested with CSase ABC, and the end product was identified as GalNAc(4S) by electrospray ionization mass spectrometry (ESI-MS). Putative GalNAc(6S) and GalNAc(4S,6S), derived presumably from GlcUA(3S)-GalNAc(6S) and GlcUA(3S)-GalNAc(4S,6S), respectively, were also detected by ESI-MS in the CSase ABC digest of a CS-E oligosaccharide fraction resistant to CSases AC-I and AC-II. Intermediates during the CSase ABC-mediated degradation of Delta4,5HexUA(3S)-GalNAc(4S) to GalNAc(4S) were identified through ESI-MS of a partial CSase ABC digest of a CS-K tetrasaccharide, GlcUA(3S)-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), and the conceivable mechanism behind the degradation of the GlcUA(3S) moiety was elucidated. Although a fucose branch was also identified in CS-K, defucosylated CS-K exhibited greater neuritogenic activity than the native CS-K, excluding the possibility of the involvement of fucose in the activity. Rather, (3S)-containing disaccharides are likely involved. These findings will enable us to detect GlcUA(3S)-containing disaccharides in CS chains to better understand CS-mediated biological processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号