首页 | 本学科首页   官方微博 | 高级检索  
     


Cholecystokinin-induced residual stimulation of enzyme secretion from mouse pancreatic acini
Authors:M Younes  R T Jensen  J D Gardner
Affiliation:Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892.
Abstract:When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37 degrees C to 4 degrees C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12-20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号