首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrogenic action of calcium on crayfish gill
Authors:L B Kirschner
Institution:(1) Department of Zoology, Washington State University, Pullman, Wash., USA;(2) Laboratory for Comparative Physiology, August Krogh Institute, Copenhagen, Denmark
Abstract:When intact crayfish are in an ion-poor medium (KCl, 0.1 mmol·l-1+KHCO3, 0.1 mmol·l-1) there is a large potential difference (transepithelial potential difference),-20 to-40 mV (hemolymph negative), across the gills. Addition of Ca2+ to the medium is followed by a rapid change in transepithelial potential difference to near 0 mV. The transepithelial potential difference showed a non-linear dependence on Ca2+]out with a limiting value of+2 to+10 mV at>1 mmol·l-1. The concentration generating a half-maximum transepithelial potential difference change (15–20 mV) was 0.1 to 0.2 mmol·l-1. Three other alkaline earth ions were also electrogenic; Ba2+ caused slightly larger transepithelial potential difference changes, Sr2+ and Mg2+ were a little less effective. It has been suggested that the transepithelial potential difference in ion-poor medium (in fish) is due to the diffusive efflux of NaCl across the gills, with a Cl-/Na+ permeability ratio of <1. Evidence is presented that this might be the case in crayfish. The electrogenic effect of Ca2+ might then be due to its effect on gill permeability to Na+ and Cl- such that the permeability ratio increased and approached unity as the transepithelial potential difference approached 0. However, this was shown to be unlikely. An alternative explanation for Ca2+ dependence of the transepithelial potential difference is that active inward Ca2+ transport is electrogenic.Abbreviations FW fresh water - I out ion efflux - IP ion-poor solution - P c Cl-permeability - P Na Na+ permeability - R electrical resistance - SW sea water - TEP transepithelial potential difference
Keywords:Gill potential  Transepithelial potential difference  Calcium transport  Crayfish gill
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号