首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sex segregation ratio and gender expression in the genus Actinidia
Authors:R Testolin  G Cipriani  G Costa
Institution:(1) Dipartimento di Produzione vegetale e tecnologie agrarie, University of Udine, Via delle scienze 208, I-33100 Udine, Italy
Abstract:The sex segregation ratio was checked in bi-parental families of Actinidia deliciosa (2n=6x=174) obtained by crossing four females (A12, Mo3, Br4, Hw1) with two males (T2, M1) and one fruiting male (M3h, subandroecious) according to a factorial mating design. The M3h fruiting male was also selfed. The sex ratio was checked in maternal families of A. kolomikta (2n=2x) and A. chinensis (2n=2x) as well as in A. deliciosa. Seedlings of both diploid species took 3–4 years to progress beyond juvenility, whereas a noticeable number of seedlings from biparental crosses of A. deliciosa involving A12 and Hw1 as seed parents were still non-flowering after seven growing seasons. Open-pollinated families of both diploid and hexaploid species as well as most families from biparental crosses showed a sex segregation ratio approaching 1ratio1. Subandroecious lines with different degrees of ovary and pistil development appeared in proportions of 0–4.2%, depending on the cross, but only 6 of the 2567 male vines checked were capable of setting fruit. No case of self-fertility or apomixis was detected among 1866 bagged female vines. Selfed M3h progenies gave only female and male phenotypes in a ratio of 1 female to 3 males. No off-type vines were found among these progenies. The same disomic sex segregation ratio seems to be operating at different ploidy levels in the genus Actinidia. Since selfed fruiting males produced both female and male individuals, the male sex appears to be the heterogametic one. Such evidence indicates that a monofactorial system based on one or more linked genes or on an X/Y chromosome set must be controlling sex expression. How a monofactorial sex-determining mechanism could operate in polyploids to give a 1ratio1 female: male ratio is discussed. Minor modifying gene(s) seem to be responsible for the feminization of males, and their expression appears enhanced by environmental conditions. Masculinizing gene(s) seem to be lacking in female genotypes.
Keywords:Sex control  Disomic segregation  Dioecy Kiwifruit  Genetics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号