首页 | 本学科首页   官方微博 | 高级检索  
     


Further characterization of cytochrome P450 involved in phytoalexin synthesis in soybean: cytochrome P450 cinnamate 4-hydroxylase and 3,9-dihydroxypterocarpan 6a-hydroxylase.
Authors:G Kochs  D Werck-Reichhart  H Grisebach
Affiliation:Biologisches Institut II, Universit?t, Lehrstuhl für Biochemie der Pflanzen, Freiburg, Germany.
Abstract:Two cytochrome P450 enzymes, cinnamate 4-hydroxylase (C4H) and 3,9-dihydroxypterocarpan 6a-hydroxylase (D6aH), were isolated from elicitor-challenged soybean (Glycine max) cell cultures (G. Kochs and H. Grisebach, 1989, Arch. Biochem. Biophys. 273, 543-553). An earlier purification protocol was improved by the use of new chromatographic media, leading to a higher yield of enzymatic activity. After separation of C4H from D6aH on hydroxyapatite, the C4H was identified using anti-C4H antibody from Jerusalem artichoke (Helianthus tuberosus) (B. Gabriac et al., 1991, Arch. Biochem. Biophys. 288, 302-309). The two proteins show molecular weights of about 58,000 for C4H and about 55,000 for D6aH on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both enzyme activities are dependent on NADPH:cytochrome P450 reductase and cross-react with their respective antibodies. Both cytochrome P450 subspecies show substrate binding and CO-difference spectra typical for cytochrome P450 and were found to be glycoproteins by their cross-reaction with biotinylated lectins in Western blot. The N-terminal sequence of C4H from soybean shows high similarity to the N-terminus of C4H from Jerusalem artichoke.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号