首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protection of winter rape photosystem 2 by 24-<Emphasis Type="Italic">epi</Emphasis>brassinolide under cadmium stress
Authors:Email author" target="_blank">A?JaneczkoEmail author  J?Koscielniak  M?Pilipowicz  G?Szarek-Lukaszewska  A?Skoczowski
Institution:(1) The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland;(2) Department of Plant Physiology, Agricultural University, Al. Mickiewicza 21, 31-120 Krakow, Poland;(3) The Wladyslaw Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland
Abstract:Seedlings of winter rape were cultured in vitro on media containing 24-epibrassinolide, EBR (100 nM) and cadmium (300 µM). After 14 d of growth, fast fluorescence kinetics of chlorophyll (Chl) a and contents of photosynthetic pigments and Cd in cotyledons were measured. Cd was strongly accumulated but its content in cotyledons was 14.7 % smaller in the presence of EBR. Neither Cd nor EBR influenced the contents of Chl a and b and carotenoids. Cd lowered the specific energy fluxes per excited cross section (CS) of cotyledon. The number of active reaction centres (RC) of photosystem 2 (RC/CS) decreased by about 21.0 % and the transport of photosynthetic electrons (ET0/CS) by about 17.1 %. Simultaneously, under the influence of Cd, the activity of O2 evolving centres (OEC) diminished by about 19.5 % and energy dissipation (DI0/CS) increased by about 14.6 %. In the cotyledons of seedlings grown on media without Cd, EBR induced only a small increase in the activity of most photochemical reactions per CS. However, EBR strongly affected seedlings cultured with cadmium. Specific energy fluxes TR0/CS and ET0/CS of the cotyledons of plants Cd+EBR media were about 10.9 and 20.9 % higher, respectively, than values obtained for plants grown with Cd only. EBR also limited the increase of DI0/CS induced by Cd and simultaneously protected the complex of OEC against a decrease of activity. Hence EBR reduces the toxic effect of Cd on photochemical processes by diminishing the damage of photochemical RCs and OECs as well as maintaining efficient photosynthetic electron transport.
Keywords:carotenoids  chlorophyll fluorescence induction  photosynthesis  winter rape
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号