首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-level expression of active recombinant ubiquitin carboxyl-terminal hydrolase of Drosophila melanogaster in Pichia pastoris
Authors:Jin Feng-liang  Xu Xiao-xia  Yu Xiao-qiang  Ren Shun-xiang
Institution:College of Natural Resources and Environments, South China Agricultural University, Engineering Research Centre of Biological Control, Ministry of Education, Guangzhou 510642, China.
Abstract:Ubiquitin carboxyl-terminal hydrolases (UCHs) are implicated in the proteolytic processing of polymeric ubiquitin. The high specificity for the recognition site makes UCHs useful enzymes for in vitro cleavage of ubiquitin fusion proteins. In this work, an active C-terminal His-tagged UCH from Drosophila melanogaster (DmUCH) was produced as a secretory form in a recombinant strain of the methylotrophic yeast Pichia pastoris. The production of recombinant DmUCH by Mut(s) strain was much higher than that by Mut(+) strain, which was confirmed by Western blot analysis. When expression was induced at pH 6.0 in a BMMY/methanol medium, the concentration of recombinant DmUCH reached 210 mg l(-1). With the (His)(6)-tag, the recombinant DmUCH was easily purified by Ni-NTA chromatography and 18 mg pure active DmUCH were obtained from 100ml culture broth supernatant. Ubiquitin-magainin fusion protein was efficiently cleaved by DmUCH, yielding recombinant magainin with high antimicrobial activity. After removing the contaminants by Ni-NTA chromatography, recombinant magainin was purified to homogeneity easily by reversed-phase HPLC. Analysis of the recombinant magainin by ESI-MS showed that the molecular weight of the purified recombinant magainin was 2465 Da, which perfectly matches the mass calculated from the amino acid sequence. The result of mass spectrometry confirmed that the purified His-tagged DmUCH can recognize the ubiquitin-magainin fusion protein and cleave it at the carboxyl terminus of ubiquitin precisely. Our results showed that P. pastoris is a robust system to express the secreted form of DmUCH.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号