首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ion efflux systems involved in bacterial metal resistances
Authors:Dietrich H Nies  Simon Silver
Institution:(1) Institut für Mikrobiologie, Martin-Luther-Universität, Halle-Wittenberg, Weinbergweg 16a, 06099 Halle, Germany;(2) Department of Microbiology and Immunology, University of Illinois at Chicago, 835 South Wolcott Avenue, 60612 Chicago, Illinois, USA
Abstract:Summary Studying metal ion resistances gives us important insights into environmental processes and provides an understanding of basic living processes. This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments. The protein products of the genes involved are sometimes prototypes of new families of proteins or of important new branches of known families. Sometimes, a group of related proteins (and presumedly the underlying physiological function) has still to be defined. For example, the efflux of the inorganic metal anion arsenite is mediated by a membrane protein which functions alone in Gram-positive bacteria, but which requires an additional ATPase subunit in some Gram-negative bacteria. Resistance to Cd2+ and Zn2+ in Gram-positive bacteria is the result of a P-type efflux ATPase which is related to the copper transport P-type ATPases of bacteria and humans (defective in the human hereditary diseases Menkes' syndrome and Wilson's disease). In contrast, resistance to Zn2+, Ni2+, Co2+ and Cd2+ in Gram-negative bacteria is based on the action of proton-cation antiporters, members of a newly-recognized protein family that has been implicated in diverse functions such as metal resistance/nodulation of legumes/cell division (therefore, the family is called RND). Another new protein family, named CDF for lsquocation diffusion facilitatorrsquo has as prototype the protein CzcD, which is a regulatory component of a cobalt-zinc-cadmium resistance determinant in the Gram-negative bacteriumAlcaligenes eutrophus. A family for the ChrA chromate resistance system in Gram-negative bacteria has still to be defined.
Keywords:Divalent cations  Cadmium  Heavy metal resistance genes  Bioenergetics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号