首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Redox Regulatory Mechanism of Transnitrosylation by Thioredoxin
Authors:Changgong Wu  Tong Liu  Wei Chen  Shin-ichi Oka  Cexiong Fu  Mohit Raja Jain  Andrew Myles Parrott  Ahmet Tarik Baykal  Junichi Sadoshima  and Hong Li
Institution:3. Center for Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School Cancer Center, Newark, New Jersey 07103,;4. Cardiovascular Research Institute and Department of Cell Biology and Molecular Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103,;5. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11743, and;6. Research Institute for Genetic Engineering and Biotechnology, TUBITAK-Marmara Arastirma Merkezi, 41470 Gebze, Turkey
Abstract:Transnitrosylation and denitrosylation are emerging as key post-translational modification events in regulating both normal physiology and a wide spectrum of human diseases. Thioredoxin 1 (Trx1) is a conserved antioxidant that functions as a classic disulfide reductase. It also catalyzes the transnitrosylation or denitrosylation of caspase 3 (Casp3), underscoring its central role in determining Casp3 nitrosylation specificity. However, the mechanisms that regulate Trx1 transnitrosylation and denitrosylation of specific targets are unresolved. Here we used an optimized mass spectrometric method to demonstrate that Trx1 is itself nitrosylated by S-nitrosoglutathione at Cys73 only after the formation of a Cys32-Cys35 disulfide bond upon which the disulfide reductase and denitrosylase activities of Trx1 are attenuated. Following nitrosylation, Trx1 subsequently transnitrosylates Casp3. Overexpression of Trx1C32S/C35S (a mutant Trx1 with both Cys32 and Cys35 replaced by serine to mimic the disulfide reductase-inactive Trx1) in HeLa cells promoted the nitrosylation of specific target proteins. Using a global proteomics approach, we identified 47 novel Trx1 transnitrosylation target protein candidates. From further bioinformatics analysis of this set of nitrosylated peptides, we identified consensus motifs that are likely to be the determinants of Trx1-mediated transnitrosylation specificity. Among these proteins, we confirmed that Trx1 directly transnitrosylates peroxiredoxin 1 at Cys173 and Cys83 and protects it from H2O2-induced overoxidation. Functionally, we found that Cys73-mediated Trx1 transnitrosylation of target proteins is important for protecting HeLa cells from apoptosis. These data demonstrate that the ability of Trx1 to transnitrosylate target proteins is regulated by a crucial stepwise oxidative and nitrosative modification of specific cysteines, suggesting that Trx1, as a master regulator of redox signaling, can modulate target proteins via alternating modalities of reduction and nitrosylation.Nitric oxide (NO) is an important second messenger for signal transduction in cells. The production of cGMP by guanylyl cyclase, enabled by the binding of NO onto heme, is considered the primary mechanism responsible for the plethora of functions exerted by NO (1). However, S-nitrosylation, the covalent addition of the NO moiety onto cysteine thiols, is increasingly recognized as an important post-translational modification for regulating protein functions (for reviews, see Refs. 2 and 3). S-Nitrosylation is dynamic, reversible, site-specific, and modulated by selected cellular stimuli (47). With improved detection sensitivity, an increasing number of S-nitrosylated proteins have been identified by proteomics technologies (5, 813). Among the known modified proteins, nitrosylation occurs only on selected cysteines (4, 6, 1417). Non-enzymatic mechanisms proposed to determine S-nitrosylation specificity include the availability of specific NO donors and protein microenvironments that stabilize the pKa of acidic target cysteines (18). Furthermore, several enzymes, including hemoglobin (19, 20), superoxide dismutase 1 (21, 22), S-nitrosoglutathione reductase (2325), and protein-disulfide isomerase (26), have been shown to possess either transnitrosylase or denitrosylase activities. However, an enzymatic system that governs site-specific transnitrosylation and denitrosylation, analogous to the kinase/phosphatase paradigm for regulating protein phosphorylation, has remained largely uncharacterized.Trx11 is an important antioxidant protein with protein reductase activity (27, 28). It has been characterized as an antiapoptotic protein because of its ability to suppress proapoptotic proteins, including apoptosis signal-regulating kinase 1 via disulfide reduction and Casp3 via transnitrosylation of Cys163 (14, 29). Conversely, Trx1 can denitrosylate Casp3 at Cys163, resulting in Casp3 activation (7). Trx1 appears to govern site-specific reversible nitrosylation of selected protein targets (14, 15), but what are the underlying mechanisms that regulate Trx1 transnitrosylation and denitrosylation activities? Are there additional Trx1-mediated transnitrosylation or denitrosylation targets that have not yet been identified? In this study, we used ESI-Q-TOF mass spectrometry (MS) to analyze the nitrosylation of Trx1 and a Casp3 peptide (Casp3p) under different redox conditions. Because of the labile nature of the S–NO bond, direct identification of S-nitrosylated proteins and their specific nitrosylation sites by MS remains challenging (8). A biotin switch method that is based on the derivatization of protein S–NO with a biotinylating agent is typically used for such analyses (8). However, like any indirect method, both false positive and negative identifications have been reported (30). Recently, we developed a method for direct analysis of protein S-nitrosylation by ESI-Q-TOF MS without prior chemical derivatization (31). Here we applied the same technique to determine the regulation of Trx1 by stepwise oxidative and nitrosative modifications of distinct cysteines and its subsequent ability to transnitrosylate target proteins. Nitrosative modification at Cys73 of Trx1 cannot occur without prior attenuation of the Trx1 disulfide reductase and denitrosylase activities via either disulfide bond formation between Cys32 and Cys35 or their mutation to serines. This is a key observation that has never been previously reported. Consequently, we designed a proteomics approach and discovered over 40 putative Trx1 transnitrosylation target proteins. We further characterized the Trx1 transnitrosylation proteome and identified three consensus motifs surrounding the putative Trx1 transnitrosylation sites, suggesting a protein-protein interaction mechanism for determining transnitrosylation specificity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号