首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of enzyme coupling sites with aromatic diazonium salts-a resonance raman study.
Authors:T Y Li  J F Chen  K L Watters  J T McFarland
Institution:Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 U.S.A.
Abstract:The coupling reaction of diazonium salts of aromatic compounds with the aromatic residues of proteins results in chromophoric covalent derivatives which yield strong resonance enhanced Raman spectra. The protein residues modified by these coupling reactions have been identified using the ν(NN) and ν(N-φ) vibrational bands in the resonance Raman spectra. Previous studies have established that diazoarsanilic acid couples with carboxypeptidase at tyrosine 248. The resonance Raman spectrum of arsanilazocarboxypeptidase was compared with spectra of arsanilazotyrosine and arsanilazohistidine model compounds; the results are consistent only with coupling at a tyrosine residue. This confirmation of the previously established site of modification establishes the utility of resonance Raman spectroscopy as a tool for identification of the site of covalent modification. To further investigate this approach, the diazonium salt of sulfanilamide (a site-specific reagent) was used to prepare a covalent coupling derivative of bovine carbonic anhydrase. The coupling reaction appears to have a stoichiometry of 1:1 and results in nearly complete loss of sulfanilamide binding capability and esterase activity. Comparison of the pH dependence of the resonance Raman spectra of sulfanilazocarbonic anhydrase with the spectra of sulfanilazotyrosine, sulfanilazohistidine, and sulfanilazotryptophan suggests that histidine is the site of modification of this new carbonic anhydrase derivative.
Keywords:Authors to whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号