首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Amino acid transport by membrane vesicles of virally transformed and nontransformed cells: effects of sodium gradient and cell density.]
Authors:J R Parnes  T Q Garvey  K J Isselbacher
Abstract:Mixed membrane vesicle populations composed of plasma membrane and endoplasmic reticulum were prepared from Balb/c 3T3 and simian virus 40-transformed Balb/c 3T3 mouse fibroblasts. The initial rates of uptake of L-leucine and alpha-aminoisobutyric acid by these vesicles were stimulated by a NaCl gradient (external greater than internal). Cation specificity for stimulation of L-leucine uptake was Na+ greater than Li+ greater than K+. NaSCN was as effective as NaCl. Stimulation of uptake of both amino acids by a NaCl gradient was twice as great in vesicles from transformed as compared to non-transformed cells. The NaCl gradient produced transient accumulation of both L-leucine and alpha-aminoisobutyric acid to twice the equilibrium level in vesicles from transformed cells. No such "overshoot" was observed in vesicles from nontransformed cells. In vesicles from the contact-inhibitable Balb/c 3T3 cells, transport of alpha-aminoisobutyric acid, but non L-leucine, exhibited a density-dependent decrease in Na+ gradient induced stimulation, from 248% for sub-confluent to 109% with confluent cells. No density-related changes in uptake were noted with vesicles from the transformed cells. These studies suggest that variation in amino acid uptake associated with viral transformation may be related, at least in part, to alterations in Na+ permeability of the surface membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号