首页 | 本学科首页   官方微博 | 高级检索  
     


S100A11 mediates hypoxia-induced mitogenic factor (HIMF)-induced smooth muscle cell migration, vesicular exocytosis, and nuclear activation
Authors:Fan Chunling  Fu Zongming  Su Qingning  Angelini Daniel J  Van Eyk Jennifer  Johns Roger A
Affiliation:Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA.
Abstract:Hypoxia-induced mitogenic factor (HIMF) is a newly discovered protein that is up-regulated in murine models of pulmonary arterial hypertension and asthma. Our previous study shows that HIMF is a potent mitogenic, angiogenic, and vasoconstrictive chemokine associated with pulmonary arterial hypertension. Two-dimensional gel electrophoresis was used to investigate downstream molecules in HIMF-induced cell signaling, demonstrating that S100A11, an EF-hand calcium-binding protein, was exclusively altered and was decreased (2.7±0.2-fold, p<0.05) in pulmonary artery smooth muscle cells (SMCs) treated with HIMF for 5 min compared with untreated cells (n=4). Immunofluorescence showed that in control cells S100A11 is a cytosolic protein, which then aggregates and translocates both to the plasma membrane with subsequent exocytosis and to the nucleus upon HIMF stimulation. Annexin A2, a known S100A11 binding partner, also colocalized with S100A11 during HIMF-induced membrane trafficking. To investigate the intracellular function of S100A11, siRNA was used to knock down S100A11 expression in SMCs. The S100A11 knockdown significantly reduced HIMF-induced SMC migration but did not affect the SMC mitogenic action of HIMF. Our data show that S100A11 mediates HIMF-induced smooth muscle cell migration, vesicular exocytosis, and nuclear activation.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号