Circular dichroism of squid rhodopsin and its intermediates |
| |
Authors: | Yoshinori Shichida Fumio Tokunaga Toru Yoshizawa |
| |
Affiliation: | Department of Biophysics, Faculty of Science, Kyoto University, Kyoto, Japan |
| |
Abstract: | Circular dichroism (CD) and absorption spectra of squid (Todarodes pacificus) rhodopsin, isorhodopsin and the intermediates were measured at low temperatures. Squid rhodopsin has positive CD bands at wavelengths corresponding the - and β-absorption bands at liquid nitrogen temperature (CD maxima: 485 nm at -band and 348 nm at β-band) as well as at room temperature (CD maxima: 474 nm at -band and 347 nm at β-band). The rotational strength of the -band has a molecular ellipticity about twice that of cattle rhodopsin. The CD spectrum of bathorhodopsin displays a negative peak at 532 nm, the rotational strength of which has an absolute value slightly larger than that of rhodopsin. The reversal in sign at -band of the CD spectrum may indicate that the isomerization of retinal chromophore from twisted 11-cis form to twisted 11-trans form has occurred in the process of conversion from rhodopsin to bathorhodopsin. Lumirhodopsin has a small negative CD band at 490 nm, the maximum of which lies at 25 nm shorter wavelengths than the absorption maximum (515 nm), and a large positive CD band near 290 nm, which is not observed in rhodopsin and the other intermediates. This band may be derived from a conformational change of the opsin. In the process of changing from lumirhodopsin to LM-rhodopsin, the CD bands at visible and near ultraviolet regions disappear. Both alkaline and acid metarhodopsins have no CD bands at visible and near ultraviolet regions. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|