首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamics of the cytoskeleton in Amoeba proteus
Authors:Stockem  Wilhelm  Hoffmann  Hans-Ulrich  Gruber  Bärbel
Institution:1.Institute for Cytology, University of Bonn, Bonn, Germany
;
Abstract:Fluorescein-labeled muscle actin was microinjected into Amoeba proteus and followed during intracellular redistribution by means of the image-intensification technique. The fully polymerization-competent protein becomes part of the endogenous actomyosin system undergoing dynamic changes over time periods of several hours. Single-frame analysis of long-term sequences enabled the direct demonstration of both the contractile activities and morphological transformations of microfilaments in normally locomoting, immobilized and phagocytozing specimens. In normally locomoting cells the filament layer undergoes continuous changes in spatial distribution depending on the actual pattern of cytoplasmic streaming and cell shape. The highest degree of differentiation is always maintained in the intermediate region between the front and the uroid, thus indicating this segment of the cortex to be the most important site in generating motive force for pseudopodium formation and ameboid movement. In immobilized cells contracted by the application of ruthenium red or relaxed by different anesthetics, the filament layer forms a continuous thick sheath beneath the cell surface or becomes completely disintegrated. In phagocytozing cells the local polymerization of actin at the tip of pseudopodia forming the food-cup and around the nascent phagosome points to a significant participation of the actomyosin system in the process of capturing and constricting prey organisms. Although our results provide clear evidence for the overall importance of motive force generation according to the hydraulic pressure theory, some motile phenomena exist in Amoeba proteus that cannot exclusively be explained by this mechanism.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号