首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of cysteine to serine substitutions in the two inter-chain disulfide bonds of insulin
Authors:Guo Z Y  Feng Y M
Institution:State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, People's Republic of China.
Abstract:Using site-directed mutagenesis we deleted the two inter-chain disulfide bonds of insulin, separately or both, by substitution of the cysteine residues with serine. Deletion of A20-B19 or both of the two inter-chain disulfide bonds resulted in the complete loss of secretion of the mutant single-chain porcine insulin precursor (PIP) from Saccharomyces cerevisiae cells. Removal of the A7-B7 disulfide bond resulted in a large reduction of secretion, but we could obtain the mutant for analysis of its biological and some physico-chemical properties. The A7-B7 disulfide bond deleted insulin mutant retained only 0.1% receptor-binding activity compared with porcine insulin, and its in vivo biological potency measured by mouse convulsion assay was also very low. We also studied some physico-chemical properties of the mutant using circular dichroism, native polyacrylamide gel electrophoresis and reversed-phase HPLC, which revealed some structural changes of the mutant peptides compared to native insulin. The present study shows that the two inter-chain disulfide bonds are important for efficient in vivo folding/secretion of PIP from yeast, especially the A20-B19 disulfide bond, and that the A7-B7 disulfide bond is crucial for maintaining the native conformation and biological activity of insulin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号