首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of unbalanced growth-induced cell damage. II. A probable relationship between unbalanced growth, DNA breakage and cell death
Authors:J Sawecka  B Golos  J Malec
Affiliation:1. Department of Public Health, Temple University, 1301 Cecil B. Moore Avenue, Ritter Annex, Philadelphia, PA 19122, United States;2. Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, United States
Abstract:This study examines the relationship between unbalanced growth, DNase II activity, DNA breakage and cell survival during the exposure of L5178Y cells to hydroxyurea (HU), excess thymidine (dThR) or HU with excess of four deoxyribonucleosides (dNR). It has been found that in the cells arrested by HU or dThR, but still appearing viable with the trypan blue exclusion test, Protein/DNA imbalance and abnormal cell volume are correlated with enhancement of DNase II activity in the cells and in the medium and with moderate increase in parental DNA breakage. The incidence of DNA breaks was markedly potentiated in the presence of non-toxic concentration of caffeine (CAF), used to inhibit DNA repair. In HU+dNR arrested cells, in which unbalanced growth was abolished, enhancement of DNase II activity and of DNA breakage in the presence or absence of CAF was substantially prevented. Comparison of posttreatment cell survival in the presence or absence of CAF confirmed the differential effect of CAF: while in HU or dThR arrested cells the presence of CAF induced marked cell killing, in HU+dNR arrested cells the influence of CAF was negligible. Only a slight effect of CAF was observed in cells in which dThR-induced arrest and unbalanced growth were reversed by deoxycytidine (dCR) addition. It is suggested that the involvement of DNA nucleases in the unbalanced growth-induced overproduction of numerous hydrolytic enzymes, with their progressive leakage through the cell membranes, can lead to progressive DNA digestion. DNA breaks produced in this way are normally, at least partly, repaired. Concomitant exposure of such cells to DNA repair inhibitor can markedly enhance the level of breaks, leading to potentiation of unbalanced growth-induced cell killing.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号