首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant
Authors:Pei‐Jian Shi  Qiang Xu  Hardev S. Sandhu  Johan Gielis  Yu‐Long Ding  Hua‐Rong Li  Xiao‐Bo Dong
Affiliation:1. Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Bamboo Research Institute, Nanjing Forestry University, Xuanwu District, Nanjing, China;2. Institute of Food and Agricultural Sciences, Everglades Research and Education Center, University of Florida, Belle Glade, Florida;3. Departement Bio‐ingenieurswetenschappen, University of Antwerp, Antwerp, Belgium
Abstract:The relationship between spatial density and size of plants is an important topic in plant ecology. The self‐thinning rule suggests a ?3/2 power between average biomass and density or a ?1/2 power between stand yield and density. However, the self‐thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log‐linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self‐thinning rule to improve light interception.
Keywords:Data fitting  density  Gielis equation  leaf shape  log‐linear  self‐thinning rule
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号