首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of K+ and Cl− channels in MDCK cells during volume regulation in hypotonic media
Authors:Umberto Banderali  Guy Roy
Institution:(1) Groupe de Recherche en Transport Membranaire, Département de Physique et Département de Physiologie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
Abstract:Single-channel patch-clamp experiments were performed on MDCK cells in order to characterize the ionic channels participating in regulatory volume decrease (RVD). Subconfluent layers of cultured cells were exposed to a hypotonic medium (150 mOsm), and the membrane currents at the single-channel level were measured in cell-attached experiments. The results indicate that MDCK cells respond to a hypotonic swelling by activating several different ionic conductances. In particular, a potassium and a chloride channel appeared in the recordings more frequently than other channels, and this allowed a more detailed study of their properties in the inside-out configuration of the patch-clamp technique. The potassium channel had a linear I/V curve with a unitary conductance of 24 +/- 4 pS in symmetrical K+ concentrations (145 mM). It was highly selective for K+ ions vs. Na+ ions: PNa/PK less than 0.04. The time course of its open probability (P0) showed that the cells responded to the hypotonic shock with a rapid activation of this channel. This state of high activity was maintained during the first minute of hypotonicity. The chloride channel participating in RVD was an outward-rectifying channel: outward slope conductance of 63.3 +/- 4.7 pS and inward slope conductance of 26.1 +/- 4.9 pS. It was permeable to both Cl- and NO3- and its maximal activation after the hypotonic shock was reached after several seconds (between 30 and 100 sec). The activity of this anionic channel did not depend on cytoplasmic calcium concentration. Quinine acted as a rapid blocker of both channels when applied to the cytoplasmic side of the membrane. In both cases, 1 mM quinine reversibly reduced single-channel current amplitudes by 20 to 30%. These results indicate that MDCK cells responded to a hypotonic swelling by an early activation of highly selective potassium conductances and a delayed activation of anionic conductances. These data are in good agreement with the changes of membrane potential measured during RVD.
Keywords:MDCK cells  patch clamp  volume regulation  potassium channels  chloride channels
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号