首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression of Arabidopsis acyl‐CoA‐binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots
Authors:ZHI‐YAN DU  MO‐XIAN CHEN  QIN‐FANG CHEN  JI‐DONG GU  MEE‐LEN CHYE
Institution:School of Biological Sciences, The University of Hong Kong, Hong Kong, China
Abstract:In Arabidopsis thaliana, the expression of two genes encoding acyl‐CoA‐binding proteins (ACBPs) AtACBP1 and AtACBP4, were observed to be induced by lead Pb(II)] in shoots and roots in qRT‐PCR analyses. Quantitative GUS (β‐glucuronidase) activity assays confirmed induction of AtACBP1pro::GUS by Pb(II). Electrophoretic mobility shift assays (EMSAs) revealed that Pas elements in the 5′‐flanking region of AtACBP1 were responsive to Pb(II) treatment. AtACBP1 and AtACBP4 were further compared in Pb(II) uptake using Brassica juncea, a potential candidate for phytoremediation given its rapid growth, large roots, high biomass and good capacity to accumulate heavy metals. Results from atomic absorption analyses on transgenic B. juncea expressing AtACBP1 or AtACBP4 indicated Pb(II) accumulation in roots. Subsequent Pb(II)‐tracing assays demonstrated Pb(II) accumulation in the cytosol of root tips and vascular tissues of transgenic B. juncea AtACBP1‐overexpressors (OXs) and AtACBP4‐OXs and transgenic Arabidopsis AtACBP1‐OXs. Transgenic Arabidopsis AtACBP1‐OXs sequestered Pb(II) in the trichomes and displayed tolerance to hydrogen peroxide (H2O2) treatment. In addition, AtACBP1 and AtACBP4 were H2O2‐induced in the roots of wild‐type Arabidopsis, while lipid hydroperoxide (LOOH) measurements of B. juncea AtACBP1‐OX and AtACBP4‐OX roots suggested that AtACBP1 and AtACBP4 can protect lipids against Pb(II)‐induced lipid peroxidation.
Keywords:heavy metals  oxidative stress  GUS assays  Pb(II) tracing  phytoremediation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号