首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry
Authors:Rybar Peter  Krivanek Roland  Samuely Tomas  Lewis Ruthven N A H  McElhaney Ronald N  Hianik Tibor
Institution:Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Comenius University, 842 48 Bratislava, Slovak Republic.
Abstract:We applied precise densimetry and ultrasound velocimetry methods to study the interaction of a synthetic alpha-helical transmembrane peptide, acetyl-K(2)-L(24)-K(2)-amide (L(24)), with model bilayer lipid membranes. The large unilamellar vesicles (LUVs) utilized were composed of a homologous series of n-saturated diacylphosphatidylcholines (PCs). PCs whose hydrocarbon chains contained from 13 to 16 carbon atoms, thus producing phospholipid bilayers of different thicknesses and gel to liquid-crystalline phase transition temperatures. This allowed us to analyze how the difference between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer influences the thermodynamical and mechanical properties of the membranes. We showed that the incorporation of L(24) decreases the temperature and cooperativity of the main phase transition of all LUVs studied. The presence of L(24) in the bilayer also caused an increase of the specific volume and of the volume compressibility in the gel state bilayers. In the liquid crystalline state, the peptide decreases the specific volume at relatively higher peptide concentration (mole ratio L(24):PC=1:50). The overall volume compressibility of the peptide-containing lipid bilayers in the liquid-crystalline state was in general higher in comparison with pure membranes. There was, however, a tendency for the volume compressibility of these lipid bilayers to decrease with higher peptide content in comparison with bilayers of lower peptide concentration. For one lipid composition, we also compared the thermodynamical and mechanical properties of LUVs and large multilamellar vesicles (MLVs) with and without L(24). As expected, a higher cooperativity of the changes of the thermodynamical and mechanical parameters took place for MLVs in comparison with LUVs. These results are in agreement with previously reported DSC and (2)H NMR spectroscopy study of the interaction of the L(24) and structurally related peptides with phosphatidylcholine bilayers. An apparent discrepancy between (2)H NMR spectroscopy and compressibility data in the liquid crystalline state may be connected with the complex and anisotropic nature of macroscopic mechanical properties of the membranes. The observed changes in membrane mechanical properties induced by the presence of L(24) suggest that around each peptide a distorted region exists that involves at least 2 layers of lipid molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号