首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Avian Retroviruses That Cause Carcinoma and Leukemia: Identification of Nucleotide Sequences Associated with Pathogenicity
Authors:Diana Sheiness  Klaus Bister  Carlo Moscovici  Lois Fanshier  Thomas Gonda  and J Michael Bishop
Abstract:Avian myelocytomatosis virus (MC29V) is a retrovirus that transforms both fibroblasts and macrophages in culture and induces myelocytomatosis, carcinomas, and sarcomas in birds. Previous work identified a sequence of about 1,500 nucleotides (here denoted oncMCV) that apparently derived from a normal cellular sequence and that may encode the oncogenic capacity of MC29V. In an effort to further implicate oncMCV in tumorigenesis, we used molecular hybridization to examine the distribution of nucleotide sequences related to oncMCV among the genomes of various avian retroviruses. In addition, we characterized further the genetic composition of the remainder of the MC29V genome. Our work exploited the availability of radioactive DNAs (cDNA's) complementary to oncMCV (cDNAMCV) or to specific portions of the genome of avian sarcoma virus (ASV). We showed that genomic RNAs of avian erythroblastosis virus (AEV) and avian myeloblastosis virus (AMV) could not hybridize appreciably with cDNAMCV. By contrast, cDNAMCV hybridized extensively (about 75%) and with essentially complete fidelity to the genome of Mill Hill 2 virus (MH2V), whose pathogenicity is very similar to that of MC29V, but different from that of AEV or AMV. Hybridization with the ASV cDNA's demonstrated that the MC29V genome includes about half of the ASV envelope protein gene and that the remainder of the MC29V genome is closely related to nucleotide sequences that are shared among the genomes of many avian leukosis and sarcoma viruses. We conclude that oncMCV probably specifies the unique set of pathogenicities displayed by MC29V and MH2V, whereas the oncogenic potentials of AEV and AMV are presumably encoded by a distinct nucleotide sequence unrelated to oncMCV. The genomes of ASV, MC29V, and other avian oncoviruses thus share a set of common sequences, but apparently owe their various oncogenic potentials to unrelated transforming genes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号