首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and experimental analyses reveals signaling plasticity in a bi-modular assembly of CD40 receptor activated kinases
Authors:Uddipan Sarma  Archana Sareen  Moitrayee Maiti  Vanita Kamat  Raki Sudan  Sushmita Pahari  Neetu Srivastava  Somenath Roy  Sitabhra Sinha  Indira Ghosh  Ajit G Chande  Robin Mukhopadhyaya  Bhaskar Saha
Affiliation:National Centre for Cell Science, Ganeshkhind, Pune, India.
Abstract:Depending on the strength of signal dose, CD40 receptor (CD40) controls ERK-1/2 and p38MAPK activation. At low signal dose, ERK-1/2 is maximally phosphorylated but p38MAPK is minimally phosphorylated; as the signal dose increases, ERK-1/2 phosphorylation is reduced whereas p38MAPK phosphorylation is reciprocally enhanced. The mechanism of reciprocal activation of these two MAPKs remains un-elucidated. Here, our computational model, coupled to experimental perturbations, shows that the observed reciprocity is a system-level behavior of an assembly of kinases arranged in two modules. Experimental perturbations with kinase inhibitors suggest that a minimum of two trans-modular negative feedback loops are required to reproduce the experimentally observed reciprocity. The bi-modular architecture of the signaling pathways endows the system with an inherent plasticity which is further expressed in the skewing of the CD40-induced productions of IL-10 and IL-12, the respective anti-inflammatory and pro-inflammatory cytokines. Targeting the plasticity of CD40 signaling significantly reduces Leishmania major infection in a susceptible mouse strain. Thus, for the first time, using CD40 signaling as a model, we show how a bi-modular assembly of kinases imposes reciprocity to a receptor signaling. The findings unravel that the signalling plasticity is inherent to a reciprocal system and that the principle can be used for designing a therapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号