首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Energy and Structure of the M2 Helix in Acetylcholine Receptor-Channel Gating
Authors:Archana Jha
Institution:Department of Physiology and Biophysics, State University of New York, Buffalo, New York
Abstract:We studied single-channel currents from neuromuscular acetylcholine receptor-channels with mutations in the pore-lining, M2 helix of the ?-subunit. Three parameters were quantified: 1), the diliganded gating equilibrium constant (E2), which reflects the energy difference between C(losed) and O(pen) conformations; 2), the correlation between the opening rate constant and E2 on a log-log scale (Φ), which illuminates the energy character of the residue (C- versus O-like) within the C?O isomerization process; and 3), the open-channel current amplitude (i0), which reports whether a mutation alters the energetics of ion permeation. The largest E2 changes were observed in the cytoplasmic half of ?M2 (5′, 9′, 12′, 13′, and 16′), with smaller changes apparent for residues ≥17′. Φ was ~0.54 for most ?M2 residues, but was ~0.32 at the positions that had largest E2 changes. An arginine substitution reduced i0 significantly at six positions, with the magnitude of the reduction increasing, 16′→2′. The measurements suggest that the 9′, 12′, and 13′ residues experience large and late free-energy changes in the channel-opening process. We speculate that in the gating isomerization the pore-facing residues >6′ and <16′ experience multiple energy perturbations associated with changes in protein structure and, perhaps, hydration.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号