首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Shear-Induced Unfolding of Lysozyme Monitored In Situ
Authors:Lorna Ashton  Eboshogwe Imomoh  Ewan W Blanch
Institution: Manchester Interdisciplinary Biocentre & Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
Experimental and Computational Laboratory for the Analysis of Turbulence (ECLAT), King's College London, Strand, London WC2R 2LS, United Kingdom
Abstract:Conformational changes due to externally applied physiochemical parameters, including pH, temperature, solvent composition, and mechanical forces, have been extensively reported for numerous proteins. However, investigations on the effect of fluid shear flow on protein conformation remain inconclusive despite its importance not only in the research of protein dynamics but also for biotechnology applications where processes such as pumping, filtration, and mixing may expose protein solutions to changes in protein structure. By combining particle image velocimetry and Raman spectroscopy, we have successfully monitored reversible, shear-induced structural changes of lysozyme in well-characterized flows. Shearing of lysozyme in water altered the protein's backbone structure, whereas similar shear rates in glycerol solution affected the solvent exposure of side-chain residues located toward the exterior of the lysozyme α-domain. The results demonstrate the importance of measuring conformational changes in situ and of quantifying fluid stresses by the three-dimensional shear tensor to establish reversible unfolding or misfolding transitions occurring due to flow exposure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号