首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A nonstationary Poisson point process describes the sequence of action potentials over long time scales in lateral-superior-olive auditory neurons
Authors:Robert G Turcott  Steven B Lowen  Eric Li  Don H Johnson  Chiyeko Tsuchitani  Malvin C Teich
Institution:(1) Department of Electrical Engineering, Columbia University, 10027 New York, NY, USA;(2) Department of Electrical and Computer Engineering, Rice University, 77251 Houston, TX, USA;(3) Sensory Science Center, University of Texas Health Science Center, 77030 Houston, TX, USA;(4) Departments of Electrical Engineering and Applied Physics, Columbia University, 10027 New York, NY, USA
Abstract:The behavior of lateral-superior-olive (LSO) auditory neurons over large time scales was investigated. Of particular interest was the determination as to whether LSO neurons exhibit the same type of fractal behavior as that observed in primary VIII-nerve auditory neurons. It has been suggested that this fractal behavior, apparent on long time scales, may play a role in optimally coding natural sounds. We found that a nonfractal model, the nonstationary dead-time-modified Poisson point process (DTMP), describes the LSO firing patterns well for time scales greater than a few tens of milliseconds, a region where the specific details of refractoriness are unimportant. The rate is given by the sum of two decaying exponential functions. The process is completely specified by the initial values and time constants of the two exponentials and by the dead-time relation. Specific measures of the firing patterns investigated were the interspike-interval (ISI) histogram, the Fano-factor time curve (FFC), and the serial count correlation coefficient (SCC) with the number of action potentials in successive counting times serving as the random variable. For all the data sets we examined, the latter portion of the recording was well approximated by a single exponential rate function since the initial exponential portion rapidly decreases to a negligible value. Analytical expressions available for the statistics of a DTMP with a single exponential rate function can therefore be used for this portion of the data. Good agreement was obtained among the analytical results, the computer simulation, and the experimental data on time scales where the details of refractoriness are insignificant. For counting times that are sufficiently large, yet much smaller than the largest time constant in the rate function, the Fano factor is directly proportional to the counting time. The nonstationarity may thus mask fractal fluctuations, for which the Fano factor increases as a fractional power (less than unity) of the counting time.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号