首页 | 本学科首页   官方微博 | 高级检索  
     


Pulsed feeding during fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression
Authors:Bhargava Swapnil  Nandakumar M P  Roy Anindya  Wenger Kevin S  Marten Mark R
Affiliation:Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
Abstract:The goal in this study was to determine if pulsed addition of substrate could be used to alter filamentous fungal morphology during fermentation, to result in reduced broth viscosity. In all experiments, an industrially relevant strain of Aspergillus oryzae was grown in 20-liter fermentors. As a control, cultures were fed limiting substrate (glucose) continuously. Tests were performed by altering the feeding strategy so that the same total amount of glucose was fed in repeated 300-s cycles, with the feed pump on for either 30 or 150 s during each cycle. Variables indicative of cellular metabolic activity (biomass concentration, oxygen uptake rate, base consumed for pH control) showed no significant difference between continuous and pulse-fed fermentations. In addition, there was no significant difference between total extracellular protein expression or the apparent distribution of these proteins. In contrast, fungal mycelia during the second half of pulse-fed fermentations were approximately half the size (average projected area) of fungi during fermentations with continuous addition of glucose. As a result, broth viscosity during the second half of pulse-fed fermentations was approximately half that during the second half of continuous fermentations. If these results prove to be applicable for other fungal strains and processes, then this method will represent a simple and inexpensive means to reduce viscosity during filamentous fungal fermentation.
Keywords:filamentous fungi  fermentation  agitation intensity  rheology  morphology  pulse fraction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号