首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acceleration of phospholipid flip-flop in the erythrocyte membrane by detergents differing in polar head group and alkyl chain length
Authors:Pantaler E  Kamp D  Haest C W
Institution:Institute for Problems of Cryobiology and Cryomedicine of the Ukrainian National Academy of Sciences, Kharkov.
Abstract:The detergents, alkyltrimethylammonium bromide, N-alkyl-N, N-dimethyl-3-ammonio-1-propanesulfonate (zwittergent), alkane sulfonate, alkylsulfate, alkyl-beta-D-glucopyranoside, alkyl-beta-D-maltoside, dodecanoyl-N-methylglucamide, polyethylene glycol monoalkyl ether and Triton X-100, all produce a concentration-dependent acceleration of the slow passive transbilayer movement of NBD-labeled phosphatidylcholine in the human erythrocyte membrane. Above a threshold concentration, which was well below the CMC and characteristic for each detergent, the flip rate increases exponentially upon an increase of the detergent concentration in the medium. The detergent-induced flip correlates with reported membrane-expanding effects of the detergents at antihemolytic concentrations. From the dependence of the detergent concentration required for a defined flip acceleration on the estimated membrane volume, membrane/water partition coefficients for the detergents could be determined and effective detergent concentrations in the membrane calculated. The effective membrane concentrations are similar for most types of detergents but are 10-fold lower for octaethylene glycol monoalkyl ether and Triton X-100. The effectiveness of a given type of detergent is rather independent of its alkyl chain length. Since detergents do not reduce the high temperature dependence of the flip process the detergent-induced flip is proposed to be due to an enhanced probability of formation of transient hydrophobic structural defects in the membrane barrier which may result from perturbation of the interfacial region of the bilayer by inserted detergent molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号