首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Resveratrol promotes the embryonic development of vitrified mouse oocytes after <Emphasis Type="Italic">in vitro</Emphasis> fertilization
Authors:Yang Wang  Meiling Zhang  Zi-Jiang Chen  Yanzhi Du
Institution:1.Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine,Shanghai Jiao Tong University,Shanghai,China;2.Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics,Shanghai,China;3.National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital,Shandong University,Jinan,China
Abstract:Vitrification of oocytes is closely associated with the lower embryonic developmental potential, which involves the cryopreservation injury occurred during vitrification. It indicates that vitrification may need to be further optimized. Therefore, we studied the effects of resveratrol, an antioxidant, on the developmental potential of vitrified mouse oocytes after in vitro fertilization. After adding a series of concentrations of resveratrol (0, 1, 10, 25, and 50 μM) into vitrification, warming, and post-warming mediums, we found that 25 and 50 μM resveratrol increased the blastocyst formation rate of vitrified oocytes. We further showed that 25 μM resveratrol increased the mean cell numbers of blastocyst from vitrified oocytes. 25 μM resveratrol reduced oxidative stress of vitrified oocytes through decreasing the levels of reactive oxygen species (ROS) and increasing the levels of glutathione (GSH), and 25 μM resveratrol alleviated the abnormal mitochondrial distribution pattern of oocytes after vitrification. In conclusion, our study implied that resveratrol could diminish the cryopreservation injuries during the vitrification of mouse oocytes and further confirmed that resveratrol may be an effective antioxidant to optimize vitrification.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号