首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of molecular defects causing congenital adrenal hyperplasia by cloning and differential hybridization of polymerase chain reaction-amplified 21-hydroxylase (CYP21) genes.
Authors:A Helmberg  M Tabarelli  M A Fuchs  E Keller  G Dobler  I Schnegg  D Knorr  E Albert  R Kofler
Institution:Department for Molecular Biology, University of Innsbruck Medical School, Austria.
Abstract:Congenital adrenal hyperplasia (CAH), one of the most common autosomal recessive disorders, is caused primarily by defects in the gene encoding steroid 21-hydroxylase, CYP21B. The molecular diagnosis of CAH, important for prenatal diagnosis, carrier detection, and a better understanding of the various clinical CAH forms, is complicated by the close proximity of a highly similar pseudogene, CYP21A, containing (and probably donating, by gene conversion-like events) most of the defects underlying CAH. In this study, we describe an efficient strategy to identify molecular defects causing CAH: polymerase chain reaction-amplified CYP21 loci are cloned and hybridized to a set of oligonucleotides, allowing rapid and allele-specific identification of all known CYP21B mutations relevant to 21-hydroxylase function. Possible new mutations can be identified by subsequent nucleic acid sequencing provided they reside within the cloned CYP21B fragment (from the TATA box to the 8th of the 10 CYP21B gene exons). Using this method, the CYP21B gene mutations of a heterozygous carrier and 25 CAH patients have been identified by oligonucleotide hybridization. All disease haplotypes seem to have been generated by recombinational events involving the CYP21A pseudogene. In 5 individuals, these data were subsequently verified by nucleic acid sequencing. The procedure can be used for diagnostic applications and may facilitate identification of new CYP21B defects.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号