Profilin is required for viral morphogenesis, syncytium formation, and cell-specific stress fiber induction by respiratory syncytial virus |
| |
Authors: | Vira Bitko Anja Oldenburg Nicolle E Garmon Sailen Barik |
| |
Affiliation: | 1. Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA 2. Department of Mathematics, University of Arizona, Tucson, AZ, 85721, USA 3. Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ, 85721, USA 4. Gonville and Caius College, Cambridge, CB2 1TA, U.K
|
| |
Abstract: | Background Bacterial macrofibers twist as they grow, writhe, supercoil and wind up into plectonemic structures (helical forms the individual filaments of which cannot be taken apart without unwinding) that eventually carry loops at both of their ends. Terminal loops rotate about the axis of a fiber's shaft in contrary directions at increasing rate as the shaft elongates. Theory suggests that rotation rates should vary linearly along the length of a fiber ranging from maxima at the loop ends to zero at an intermediate point. Blocking rotation at one end of a fiber should lead to a single gradient: zero at the blocked end to maximum at the free end. We tested this conclusion by measuring directly the rotation at various distances along fiber length from the blocked end. The movement of supercoils over a solid surface was also measured in tethered macrofibers. Results Macrofibers that hung down from a floating wire inserted through a terminal loop grew vertically and produced small plectonemic structures by supercoiling along their length. Using these as markers for shaft rotation we observed a uniform gradient of initial rotation rates with slopes of 25.6°/min. mm. and 36.2°/min. mm. in two different fibers. Measurements of the distal tip rotation in a third fiber as a function of length showed increases proportional to increases in length with constant of proportionality 79.2 rad/mm. Another fiber tethered to the floor grew horizontally with a length-doubling time of 74 min, made contact periodically with the floor and supercoiled repeatedly. The supercoils moved over the floor toward the tether at approximately 0.06 mm/min, 4 times faster than the fiber growth rate. Over a period of 800 minutes the fiber grew to 23 mm in length and was entirely retracted back to the tether by a process involving 29 supercoils. Conclusions The rate at which growing bacterial macrofibers rotated about the axis of the fiber shaft measured at various locations along fibers in structures prevented from rotating at one end reveal that the rate varied linearly from zero at the blocked end to maximum at the distal end. The increasing number of twisting cells in growing fibers caused the distal end to continuously rotate faster. When the free end was intermittently prevented from rotating a torque developed which was relieved by supercoiling. On a solid surface the supercoils moved toward the end permanently blocked from rotating as a result of supercoil rolling over the surface and the formation of new supercoils that reduced fiber length between the initial supercoil and the wire tether. All of the motions are ramifications of cell growth with twist and the highly ordered multicellular state of macrofibers. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|