首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Boundary element modeling of biomolecular transport.
Authors:S A Allison
Institution:Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA. chesaa@panther.gsu.edu
Abstract:The boundary element (BE) methodology has emerged as a powerful tool in modeling a broad range of different transport phenomena of biomolecules in dilute solution. These include: sedimentation, diffusion (translational and rotational), intrinsic viscosity, and free solution electrophoresis. Modeling is carried out in the framework of the continuum primitive model where the biomolecule is modeled as an arbitrary array of solid platelets that contains fixed charges within. The surrounding fluid is modeled as a electrodynamic/hydrodynamic continuum which obeys the Poisson and low Reynolds number Navier-Stokes equations. Ion relaxation (the distortion of the ion atmosphere from equilibrium) can also be accounted for by solving the coupled ion transport equation (for each mobile ion species present), Poisson, and Navier-Stokes equations in tandem. Several examples are presented in this work. It is first applied to a detailed model of 20 bp DNA and it is concluded that it is not necessary to include a layer of bound water to reconcile experimental and model translational diffusion constants. With regards to diffusion, the BE approach is also applied to a 375-bp supercoiled DNA model (without ion relaxation), and also 20-60-bp DNA fragments with ion relaxation included in order to assess the magnitude of the electrolyte friction effect under a number of different salt/buffer conditions. Attention is then turned to modeling the electrophoretic mobility of three different cases. First of all, we consider a sphere with a central charge large enough in magnitude to insure that ion relaxation is significant. Excellent agreement with independent theory is obtained. Finally, it is applied to modeling short DNA fragments in KCl and Tris acetate salts. Quantitative agreement is achieved when the salt is KCl, but the calculated (absolute) mobility in Tris acetate is substantially higher than the experimental value. The interpretation of this is that there is an association between Tris(+) and DNA (perhaps hydrogen bonding) not accounted for in our modeling that is responsible for this discrepancy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号